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Abstract Lid-driven cavity flows have been widely investigated and accurate results
have been achieved as benchmarks for testing the accuracy of computational methods.
This paper investigates sensitivity of a mesh refinement method against the accuracy of
numerical solutions of the 2-D steady incompressible lid-driven flow from a collocated
finite volume method. The sensitivity analysis is shown by comparing the coordinates
of centres of primary and secondary vortices located by the mesh refinement method
with the corresponding benchmark results. The accuracy of the numerical solutions
is shown by comparing the profiles of horizontal and vertical components of velocity
fields with the corresponding benchmarks and the streamlines. The sensitivity analysis
shows that the mesh refinement method provides accurate coordinates of primary and
secondary vortices depending on the accuracy of the numerical solutions. The adaptive
mesh refinement method considered can be applied to incompressible fluid or steady
state fluid flows or mass and heat transfer.

Keywords Mesh refinement · Mass conservation · Lid-driven cavity flow ·
Collocated finite volume method

1 Introduction

Meshing is the process of breaking up a physical domain into smaller sub-domains
(elements or cells) in order to evaluate the numerical solution of differential equations.
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Adaptive mesh refinement is a computational technique to improve the accuracy of
numerical solutions of differential equations by starting the calculations on a coarse
basic mesh (initial mesh) and then refining this mesh only where less accuracy may
occur locally.

There are a large number of publications on mesh adaptive refinements and their
applications. Some refinement methods use a refinement criterion which is based on
local truncation errors (e.g. [1,3–5]). Other common methods include h-refinement
(e.g. [20,23]), p-refinement (e.g. [3,25]) or r-refinement (e.g. [21,22]), with different
combinations of these also possible (e.g. [6,7]). The overall aim of these adaptive
algorithms is to obtain a balance between accuracy and computational efficiency. The
h-refinement is a method where meshes are refined and/or coarsened to achieve a
prescribed accuracy and efficiency. The p-refinement is a method where the accu-
racy orders are assigned to elements to achieve exponential convergence rates and
r-refinement is a method where elements are moved and redistributed to track evolv-
ing non-uniformities.

We introduced adaptive mesh refinement methods from a different point of view for
two-dimensional velocity fields [19] and for three-dimensional fields [18] based on a
theorem in qualitative theory of differential equations (Theorem 1.14, page 18, [24]).
The theorem indicates that a 2D divergence free vector field has no limit cycles or one
sided limit cycles, that is, the trajectories (or streamlines) of divergence free vector
fields are closed curves in bounded domains. Identification of accurate locations of sin-
gular points (singular points are streamlines) and asymptotic lines (planes), and draw-
ing closed streamlines are some of the accuracy measures for computational methods.
We consider these accuracy measures in the mesh refinement methods we proposed.
The adaptive mesh refinement methods adaptively refine cells where the linear inter-
polation of the evaluated numerical velocity fields is not a divergence free vector field.
Using numerical velocity fields obtained by taking the vectors of the analytical veloc-
ity fields at nodes of meshes, examples showing the accuracy of the methods include:
locating the singular points and asymptotic lines for two-dimensions [19]; the singular
points and asymptotic plane for three-dimensions [18]; and drawing closed streamlines
(Li [16,17]) using the refined meshes with a pre-specified number of refinements of
the initial meshes. The examples also showed that the Lebesgue measure of the set of
cells on which the linear interpolation of the evaluated numerical velocity fields is not
divergence free becomes smaller with the increase of the number of mesh refinements.
However, it is impossible to achieve such numerical velocity fields in practice. The
sensitivity analysis for the adaptive mesh refinement methods for the numerical veloc-
ity fields obtained by solving mathematical models numerically is necessary before
applying methods in practice.

This paper considers the sensitivity analysis of the 2D adaptive mesh refinement
method using the numerical velocity fields of 2D lid-driven cavity flows obtained from
solving Navier–Stokes equations numerically with the boundary conditions. We solve
the Navier–Stokes equations with the boundary conditions numerically using a second
order collocated finite volume method (FVM) with a splitting method for time dis-
cretization [9] and then apply the refinement method to the numerical solutions once
and then compare the results with the corresponding benchmarks. The comparisons
show that the adaptive mesh refinement method provides the similar results to those
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for the analytical velocity fields [19]. The accuracy of the coordinates of vortices men-
tioned above fully depends on the accuracy of the numerical solutions. This provides
the reliability of the mesh refinement method when it is applied to solve problems. In
the following discussion, we consider incompressible fluid only but the discussion is
the same for steady compressible flows by replacing the linearly interpolated velocity
field Vl with linearly interpolated momentum vector ρVl (where ρ is the density).

2 Algorithm of mesh refinement

This section briefly summarizes the 2D adaptive mesh refinement method [19] and
gives detailed algorithms.

Assume that Vl = AX + B is a vector field obtained by linearly interpolating the
vectors at the three vertexes of a triangle, where

A =
(

a11 a12
a21 a22

)
, and B =

(
b′

1
b′

2

)

are constant matrices and vertical vector respectively, and X = (x1, x2)
T . The vector

Vl is unique if the area of the triangle is not zero [14]. Mass conservation for a steady
flow or an incompressible fluid requires that

∇ · Vl = trace(A) = 0. (1)

Let f be a scalar function depending only on spatial variables. We assume that f Vl

satisfies Eq. (1) and then calculate the expressions of f . The expressions of f were
derived for the four different Jacobian forms of coefficient matrix A as shown in
Table 1 [19]. Variables y1 and y2 in Table 1 are the components of (y1, y2)

T = V−1X
where V satisfies AV = VJ and J is one of the Jacobian matrices in Table 1. The
introduction of scalar function f reduces the number of refined cells but f Vl and Vl

produce the same streamlines if f �= 0 or ∞ [15]. The introduction of the adaptive
mesh refinement is to achieve refined meshes on which Vl or f Vl are not divergence
free in a set of cells with controllable small Lebesgue measure.

Table 1 Jacobian matrices and corresponding expressions of f (C �= 0)

Case Jacobian f

1

(
r1 0
0 r2

)
(0 �= r1 �= r2 �= 0) C(

y1+ b1
r1

)(
y2+ b2

r2

)

2

(
r1 0
0 0

)
(r1 �= 0) C

y1+ b1
r1

3

(
r1 0
0 r1

)
(r1 �= 0) C(

y1+ b1
r1

)2

4

(
μ λ

−λ μ
)
(μ �= 0, λ �= 0) C(

y1+μb1−λb2
μ2+λ2

)2
+

(
y2+ λb1+μb2

μ2+λ2

)2
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The conditions (MC)(MC is the abbreviation of mass conservation) are the functions
f in Table 1 not equalling zero or infinity at any point on the triangular domains when
f Vl is divergence free on these triangular domains.

We describe the algorithm of adaptive mesh refinement for quadrilateral mesh in
this paper. The algorithm is also applicable to triangular meshes. The following cell
refinement algorithm describes how to use the conditions (MC) to refine a quadrilateral
cell in a given mesh. To avoid an infinite refinement of the mesh, we choose a pre-
specified threshold number of refinements T based on the accuracy requirements. The
algorithm of cell refinement is:

Step 1 Subdivide a quadrilateral cell into two triangles and check if Vl satisfies Eq. (1)
on both triangles. If yes, no refinement for the cell is required. If no, go to Step
2.

Step 2 Apply the conditions (MC) to both of the triangles. If the conditions (MC) are
satisfied on both triangles, there is no need to subdivide the cell. Otherwise,
we subdivide the cell into a number of small cells such that the lengths of all
sides of the small cells are truly reduced.

The algorithm of adaptive mesh refinement is:

Step 1 Evaluate the numerical velocity field for a given initial mesh;
Step 2 Refine the cells of the mesh one by one using the above cell refinement algo-

rithm;
Step 3 Take the refined mesh as initial mesh and go to Step 1 until a satisfactory

numerical velocity field is obtained or the threshold number T is reached.

In this paper, we subdivide a quadrilateral cell by connecting the mid-points of
the two opposite sides of a quadrilateral and the threshold number T = 1, that is, we
subdivide a cell once only for testing the sensitivity of the adaptive mesh refinement
method. Quadrilateral and triangular meshes are the commonly used 2D meshes but
the application of the conditions (MC) is harder to quadrilateral than to triangular.
We show the harder case. The abbreviations BR, BL and TL refer to bottom right,
bottom left and top left corners of the cavity, respectively. The number following
these abbreviations refer to the vortices that appear in the flow, which are numbered
according to size (for example, BR1 refers to bottom right secondary vortex).

3 Collocated finite volume scheme with a splitting method for the time
discretization

In this section, we briefly review the colocated finite volume scheme used for evaluating
the numerical solutions of 2D lid-driven cavity flows [9].

3.1 Navier–Stokes equations for incompressible fluids

For given volume force f = ( fu, fv), we look for the velocity field u and the pressure
p that satisfy
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∂u
∂t

− ν�u + (u · ∇) u + ∇ p = f, (2)

∇ · u = 0 (3)

in Ω × [0, T ], where ν > 0 is the kinematic viscosity, u = (u(x, y, t), v(x, y, t)),
and t ≥ 0. On the boundary ∂Ω of Ω , a Dirichlet no-slip boundary condition is
used

u|∂Ω = g.

3.2 Time discretization

The time discretization for (2) and (3) is

3un+1 − 4un + un−1

2�t
− ν�un+1 + h̄

(
un,un−1

)
+ 2∇ pn − ∇ pn−1 = fn+1, (4)

where h̄
(
un,un−1

) = 2 (un · ∇un)− (
un−1 · ∇un−1

)
.

We calculate un+1 using (4) with the boundary condition u|∂Ω = g and compute
the pressure pn+1 from

{
�ψn+1 = ∇ ·

(
3un+1−4un+un−1

2�t

)
∂ψn+1

∂n = 0

pn+1 = ψn+1 + 2pn − pn−1 − ν∇ · un+1.

3.3 Finite volume discretization

We summarize the steps of the algorithm.

3.3.1 Compute the new velocity field un+1 = (
un+1, vn+1

)

�x�y
3un+1

i j − 4un
i j + un−1

i j

2�t
− ν

[
�y

un+1
i+1 j − un+1

i j

�x
+�y

un+1
i−1 j − un+1

i j

�x

+�x
un+1

i j+1 − un+1
i j

�y
+�x

un+1
i j−1 − un+1

i j

�y

]

+ℵ
(

pn, pn−1
)

+ h̄
(

un,un−1
)

i j
= �x�yfn+1

i j

where

ℵ
(

pn, pn−1
)

= 2

⎡
⎣ �y

2

(
pn

i+1 j − pn
i−1 j

)
�x
2

(
pn

i j+1 − pn
i j−1

)
⎤
⎦ −

⎡
⎣ �y

2

(
pn−1

i+1 j − pn−1
i−1 j

)
�x
2

(
pn−1

i j+1 − pn−1
i j−1

)
⎤
⎦
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and

h̄
(

un,un−1
)

= �y
(

2Fn
ui+1/2 j − Fn−1

ui+1/2 j

) (
2

un
i+1 j + un

i j

2
− un−1

i+1 j + un−1
i j

2

)

−�y
(

2Fn
ui−1/2 j − Fn−1

ui−1/2 j

) (
2

un
i−1 j + un

i j

2
− un−1

i−1 j + un−1
i j

2

)

+�x
(

2Fn
vi j+1/2 − Fn−1

vi j+1/2

) (
2

un
i j+1 + un

i j

2
− un−1

i j+1 + un−1
i j

2

)

−�x
(

2Fn
vi j−1/2 − Fn−1

vi j−1/2

)(
2

un
i j−1 + un

i j

2
− un−1

i j−1 + un−1
i j

2

)

3.3.2 Compute the pressure pn+1

pn+1
i j = ψn+1

i j + 2pn
i j − pi j − ν

�x�y

[
�y

(
Fn+1

ui+1/2 j − Fn+1
ui−1/2 j

)

+�x
(

Fn+1
vi j+1/2 − Fn+1

vi j−1/2

)]

where ψn+1 is computed from

�y
ψn+1

i+1 j − ψn+1
i j

�x
+�y

ψn+1
i−1 j − ψn+1

i j

�x
+�x

ψn+1
i j+1 − ψn+1

i j

�y

+�x
ψn+1

i j−1 − ψn+1
i j

�y

= 1

2�t

{
�y

[(
3Fn+1

ui+1/2 j − 4Fn
ui+1/2 j + Fn−1

ui+1/2 j

)

−
(

3Fn+1
ui−1/2 j − 4Fn

ui−1/2 j + Fn−1
ui−1/2 j

)]

+�x
[(

3Fn+1
vi j+1/2 − 4Fn

vi j+1/2 + Fn−1
vi j+1/2

)

−
(

3Fn+1
vi j−1/2 − 4Fn

vi j−1/2 + Fn−1
vi j−1/2

)]}

With Neumann boundary condition

ψn+1
M+1 j = ψn+1

M j , ψn+1
0 j = ψn+1

1 j , ψn+1
i N+1 = ψn+1

i N , ψn+1
i0 = ψn+1

i1 ,

where M and N are the number of lines inserted in x interval and y interval of the
domain equally.
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3.3.3 Compute the flux Fn+1

Fn+1
ui+1/2 j = un+1

i+1 j + un+1
i j

2
+ θ

�y

4a

(
pn

i+2 j − 2pn
i+1 j + pn

i j

)

−θ �y

4a

(
pn

i+1 j − 2pn
i j + pn

i−1 j

)

Fn+1
vi j+1/2 = vn+1

i j+1 + vn+1
i j

2
+ θ

�x

4a

(
pn

i j+2 − 2pn
i j+1 + pn

i j

)

−θ �x

4a

(
pn

i j+1 − 2pn
i j + pn

i j−1

)

where θ = 1/4 as a relaxation coefficient and

a =
(
�x�y

�t
+ ν

�y

�x
+ ν

�x

�y

)

The stop criterion for the calculations in this paper is ‖un+1 − un‖ < 10−6.

4 Control volume face centred mesh

In this section, we present the initial mesh used to evaluate the numerical solutions
of 2D lid-driven cavity flows. Since the mesh refinement method is for the numerical
velocity fields given at the nodes of the initial mesh, we must construct a new mesh
for the colocated finite volume method such that the nodes (stars at the intersection
of the solid lines) of the initial mesh locate in the midway between faces of control
volumes of the new mesh (dashed lines inside of the unit square in Fig. 1) [10]. To
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Fig. 1 Control volume face centred mesh
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facilitate the boundary conditions accurately, we extend the initial mesh and add more
nodes (the dots) in the outside region of the unit square as shown in Fig. 1. We apply
the boundary conditions to the average of the velocity field at the nodes outside of unit
square and those inside of the square symmetrical to them. This arrangement provides
second order accuracy of the boundary conditions in the evaluations of the numerical
solutions. The mesh refinement algorithm applies to the numerical velocity fields at
the nodes inside of unit square and on the boundaries evaluated by the given boundary
conditions.

5 Sensitivity analysis

In the analysis of the 2D adaptive mesh refinement for numerical velocity fields
obtained from analytical velocity fields, we have previously shown that the singular
points (centres of vortices) of the velocity fields are contained inside of refined cells
and asymptotic lines are located inside of blocked refined cells [19]. A cell is said to be
a refined cell if a cross is drawn inside. In this section, we provide the same information
for numerical velocity fields achieved from solving Navier–Stokes equations.

We consider the refined meshes for two-dimensional lid-driven cavity flows for
different mesh sizes and Reynolds number Re = 100, 1,000, and 2,500, respectively.
We show horizontal and vertical velocity profiles, refined meshes, and refined meshes
with streamlines. The streamlines are generated by Matlab built-in function streamline.
In each subsection, we consider two initial meshes for one Reynolds number: one
coarser and one finer. We take the coordinates of intersections of crosses in isolated
refined cells in refined meshes as the estimates for centres of vortices. The figures
of horizontal velocity fields at x = 0.5 and vertical velocity profiles at y = 0.5 with
their corresponding benchmarks show the partial accuracy of numerical velocity fields.
Matlab built-in function streamline generate streamlines from vector data. Therefore,
the figures of streamlines show the global accuracy of numerical velocity fields given
by verifying whether the streamlines are closed. The sensitivity of mesh refinement
are indicated in the figures of refined meshes and Tables 2 and 3.

Table 2 Primary and second vortex centre locations for coarser mesh sizes

Vortex type Reynolds numbers

Re = 100 (41 × 41) Re = 1,000 (69 × 69) Re = 2,500 (91 × 91)

Primary vortex (0.6463,0.7683) (0.5435,0.5870) (0.5355,0.5550)

(0.6172,0.7344) (0.5300,0.5650) (0.5200,0.5433)

BR1 (0.9634,0.0610) (0.8624,0.1232) (0.8297,0.0934)

(0.9453,0.0625) (0.8633,0.1117) (0.8350,0.0917)

BL1 – (0.0797,0.0797) (0.08242,0.1044)

(0.0313,0.0391) (0.0833,0.0783) (0.0850,0.1100)

TL1 – – (0.03847,0.8956)

– – (0.0433,0.8900)
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Table 3 Primary and second vortex centre locations for mesh size 121 × 121

Vortex type Reynolds numbers

Re = 100 Re = 1,000 Re = 2,500

Primary vortex (0.6240,0.7479) (0.5331,0.5744) (0.5248,0.5496)

(0.6172,0.7344) (0.5300,0.5650) (0.5200,0.5433)

BR1 (0.9463,0.0620) (0.8636,0.1198) (0.8306,0.0950)

(0.9453,0.0625) (0.8633,0.1117) (0.8350,0.0917)

BL1 (0.0372,0.0372) (0.0868,0.0785) (0.0868,0.1033)

(0.0313,0.0391) (0.0833,0.0783) (0.0850,0.1100)

TL1 – – (0.0455,0.8967)

– – (0.0433,0.8900)
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Horizontal Velocity Profile for Re=100
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Fig. 2 Horizontal profile of velocity field for mesh size 41 × 41

5.1 Re = 100

Figure 2 shows the horizontal velocity profile and Fig. 3 shows the vertical veloc-
ity profile for mesh size 41 × 41 together with the corresponding benchmark results
[11]. Even though both figures show right shapes of the two components, there are
errors especially for vertical component which may not be acceptable if the required
accuracy of the computations is small. From Figs. 4 and 5, we find two centres of
vortices: primary and secondary bottom right (BR1) without difficulty. The stream-
lines shown in Fig. 5 are not closed and this indicates that the linearly interpolated
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Fig. 3 Vertical profile of velocity field for mesh size 41 × 41
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Fig. 4 Refined mesh for mesh size 41 × 41

numerical velocity field Vl or f Vl do not satisfy Eq. (1) [13]. Figure 4 shows the
refined cells (containing crosses) where f Vl or Vl do not satisfy Eq. (1). If the
interpolated velocity field Vl or f Vl satisfy Eq. (1) on all cells, all streamlines
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Fig. 5 Refined mesh with streamlines for mesh size 41 × 41

are closed. The estimates of centre of vortices for mesh size 41 × 41 are shown
in Table 2.

Figures 6 and 7 show the horizontal and vertical velocity profiles, respectively,
for mesh size 121 × 121 together with the corresponding benchmark results [11].
The accuracy of the computations has been greatly improved from these two figures.
From Figs. 8 and 9, we find three centres of vortices: primary, secondary bottom left
(BL1) and right (BR1). Even though the streamlines shown in both Figs. 5 and 9 are
not closed, the streamlines in Fig. 9 are spiral much closer. Figure 8 is the same as
Fig. 4 showing the refined cells where Vl or f Vl do not satisfy Eq. (1). The estimates
of centre of vortices for mesh size 121 × 121 are shown in Table 3. The centre of
BL1 is not identified by mesh size 41 × 41 but it is identified by mesh size 121 ×
121.

5.2 Re = 1,000

Since Reynolds number Re increases, finer mesh is required to produce reliable results
[11]. We replace mesh size 41 × 41 by 69 × 69. Figures 10 and 11 show horizontal
and vertical velocity profiles respectively for mesh size 69 × 69 together with the
corresponding benchmark results [8]. It is the same as Figs. 2 and 3 that even though
both figures show right shapes of the two components, there are errors especially for
vertical component which may not be acceptable. Based on the numerical velocity
fields with the errors shown in Figs. 10 and 11, three centres of vortices: primary,
secondary bottom right (BR1) and left (BL1) are found and shown in Figs. 12 and 13.
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Fig. 6 Horizontal profile of velocity field for mesh size 121 × 121

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Vertical Velocity Profile for Re=100

V

X Ghia 129x129
Present 121x121

Fig. 7 Vertical profile of velocity field for mesh size 121 × 121
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Fig. 8 Refined mesh for mesh size 121 × 121
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Fig. 9 Refined mesh with streamlines for mesh size 121 × 121

The streamlines shown in Fig. 13 are not closed even though they are better than those
in Fig. 5 and this indicates that the interpolated numerical velocity field Vl or f Vl do
not satisfy Eq. (1) [13]. Figure 12 shows the refined mesh which contains the refined
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Fig. 10 Horizontal profile of velocity field for mesh size 69 × 69
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Fig. 11 Vertical profile of velocity field for mesh size 69 × 69
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Fig. 12 Refined mesh for mesh size 69 × 69
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Fig. 13 Refined mesh with streamlines for mesh size 69 × 69

cells where Vl or f Vl do not satisfy Eq. (1). The estimates of centre of vortices for
mesh size 69 × 69 are shown in Table 2.

Figures 14 and 15 show the horizontal and vertical velocity profiles, respectively,
for mesh size 121 × 121 together with the corresponding benchmark results [8]. The
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Fig. 14 Horizontal profile of velocity field for mesh size 121 × 121
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Fig. 15 Vertical profile of velocity field for mesh size 121 × 121
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Fig. 16 Refined mesh for mesh size 121 × 121

accuracy of the computations has been greatly improved from these two figures but
from Figs. 16 and 17, we find same three centres of vortices: primary, secondary
bottom left (BL1) and right (BR1). The streamlines in Fig. 17 are also improved.
Figures 12 and 16 do not show obvious differences between the two different mesh
sizes. However, the accuracies of the estimates for the coordinates of centres of the
three vortices for the two different mesh sizes are different as shown in Tables 2 and 3.

5.3 Re = 2,500

We use mesh size 91 × 91 as a coarser mesh. Figures 18 and 19 show horizontal and
vertical velocity profiles respectively for the mesh size together with the corresponding
benchmark results [8]. Figures 18 and 19 show similar errors for both components of
the numerical velocity field. Based on the numerical velocity fields with the errors
shown in Figs. 18 and 19, four centres of vortices: primary, secondary bottom right
(BR1) and left (BL1), and top left (TL1) are identified and shown in Figs. 20 and 21. The
streamlines shown in Fig. 21 are not closed so this fact indicates that the interpolated
numerical velocity field vl or f vl do not satisfy Eq. (1) [13]. Figure 20 shows the
refined mesh which presents information where vl or f vl do not satisfy Eq. (1). The
estimates of centre of vortices for mesh size 91 × 91 are shown in Table 2.

Same finer mesh size 121 × 121 is used for presenting the change of accuracy of
numerical solutions for lid-driven cavity flows with the change of Reynolds number
in the following consideration. Figures 22 and 23 show the horizontal and vertical
velocity profiles, respectively, for mesh size 121 × 121 together with the corresponding
benchmark results [8]. The accuracies of the horizontal and vertical velocity profiles
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Fig. 17 Refined mesh with streamlines for mesh size 121 × 121
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Fig. 18 Horizontal profile of velocity field for mesh size 91 × 91
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Fig. 19 Vertical profile of velocity field for mesh size 91 × 91
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Fig. 20 Refined mesh for mesh size 91 × 91
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Fig. 21 Refined mesh with streamlines for mesh size 91 × 91

for Re = 2,500 using the same finer mesh sizes are worse than those for Re = 1,000 and
Re = 100. The accuracy of the computations has been greatly improved by comparing
Figs. 22 and 23 with Figs. 18 and 19. However, we find the same four centres of vortices:
primary, secondary bottom left (BL1) and right (BR1), and top left (TL1) in Figs. 24
and 25. It is difficult to find the differences between the streamlines in Figs. 21 and
25. However, the accuracies of the estimates for the coordinates of centres of the four
vortices for the two different mesh sizes are different as shown in Tables 2 and 3.

5.4 Vortex centre locations

The coordinates of centres of primary, secondary and tertiary vortices reported from
[11] are evaluated using a mesh with 129 × 129 uniform cells for Re = 100 and [8]
using a mesh with 601 × 601 uniform cells for Re = 1,000, and 2,500. Tables 2 and 3
present that the accuracy of the estimates for centres of vortices is improved when the
mesh sizes increases. For Re = 100, there is a vortex in the bottom left corner from the
information in the refined mesh but we cannot find which cell contains the centre of
the vortex. The coordinates in italic in Tables 2 and 3 are the benchmark results [11]
for Re = 100, and the other italic coordinates are the benchmark results [8].

6 Discussion

There are some cases in which no isolated refined cells are found in refined meshes.
However, we can calculate the coordinates of the centres from the interpolated velocity
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Fig. 22 Horizontal profile of velocity field for mesh size 121 × 121
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Fig. 23 Vertical profile of velocity field for mesh size 121 × 121
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Fig. 24 Refined mesh for mesh size 121 × 121
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Fig. 25 Refined mesh with streamlines for mesh size 121 × 121

fields with both components of the velocity fields are zero. We can take these coor-
dinates as the estimates for the centres of vortices. If there is no singular point in a
region, all streamlines inside the region are closed [14]. The refined meshes also show
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other refined elements and some of which form separation curves for multiple regions
of separated flow [2]. However, we do not have the data for the separation curves.
Therefore, we are not able to test the sensitivity of the mesh refinement method using
separation curves.

The results shown in this paper demonstrate that the proposed mesh refinement
method for 2D velocity fields is not very sensitive to the accuracy of numerical velocity
fields. We conclude that the refinement method provides accurate and reliable refined
meshes from which accurate numerical solutions can be achieved by adaptively solving
mathematical models which contain continuity equation.
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